Implications for quarkonia

Quarkonia dissolve from:

Cold Nuclear Matter

Debye screening

Landau damping...

Today: *very* near T_c , $T_c < T < 1.2 T_c$, qualitatively *new* region.

Not just "a" screening mass. Higgs effect gives "split" masses: some heavy, some light.

Propagation of color fields dynamically suppressed

Effects on Debye screening, Landau damping, for quarkonia?

An effective (matrix) model for deconfinement

- 1. Lattice: SU(N) gauge theories, with *out* quarks. *Most* quantities scale with N. *Not* just the pressure: Polyakov loop, correlation functions, interface tensions
- 2. Matrix model: simple mean field model, valid in large N expansion

Fit pressure, including latent heat, for all N, with two (N-dependent) parameters

Good agreement with interface tensions, both order-order and order-disorder

Problem: sharp *dis*agreement with the (renormalized) Polyakov loop - ?

Qualitatively *new*: adjoint Higgs phase, pattern of *split* masses, for $T < 1.2 T_c$.

Unexpected punchline: transition region *very narrow*, < 1.2 T_c!

Dumitru, Guo, Hidaka, Korthals-Altes, & RDP, arXiv:1011.3820 + 11... DGHKP Generalization of Meisinger, Miller, Ogilvie ph/0108009, MMO

Also: ...RDP, ph/0608242; Y. Hidaka & RDP, 0803.0453, 0906.1751, 0907.4609, 0912.0940.

What the lattice tells us

Its *not* just the pressure...

Lattice: SU(N) thermodynamics, $T_c \rightarrow 4 T_c$

SU(N) gauge theories with*out* quarks, temperature $T \neq 0$ Scaled by ideal gas, energy and pressure *approximately* independent of N. e and $p \approx 0$ below T_c : $\sim N^2$ - 1 gluons above T_c , vs \sim 1 hadrons below.

Lattice: peak in conformal anomaly

For SU(N), "peak" in e-3p/T⁴ just above T_c. *Approximately* uniform in N.

Not near T_c : transition 2nd order for N = 2, 1st order for all $N \ge 3$

N=3: weakly 1st order. N = ∞ : strongly 1st order (latent heat \sim N²)

Lattice: scaling of the conformal anomaly

Scaling: (e-3p)/T² approximately constant near T_c: MMO '01; RDP, ph/0608242

Only true near T_c ; eventually, $(e-3p)/T^4 \sim g^4(T)$

Lattice: precise scaling of the conformal anomaly

Lattice: WHOT. Change # time steps at fixed lattice scale. Higher precision, ± 1%

$$T: 1.2 \to 2 T_c: \frac{e-3p}{T^2} \approx (543 \,\mathrm{MeV})^2 \pm 1\%$$

$$p(T) \approx \# T^2(T^2 - c T_c^2), c = 1.00 \pm .01$$

Umeda, Ejiri, Aoki, Hatusda, Kanaya, Maezawa, Ohno, 0809.2842

Lattice vs resummed perturbation theory

HTL resummed perturbation thy., next to next to leading order, works down to - 8 Tc? Assume that the QCD coupling runs like $\alpha(2\pi T)$: Braaten & Nieto, hep-ph/9501375 Coupling is *moderate* even at T_c , $\alpha(2\pi T_c) \sim 0.3$,

"Hidden" Z(2) spins in SU(2)

Consider $U_c = constant$ gauge transf.

Two colors: det
$$U_c = (-)^2 = 1$$
, so $U_c \in SU(2)$

$$U_c = \left(\begin{array}{cc} -1 & 0\\ 0 & -1 \end{array}\right) = -\mathbf{1}$$

 U_c very special: ~ 1 , so gluons invariant:

$$A_{\mu} \to U_c^{\dagger} A_{\mu} U_c = + A_{\mu}$$

If gluons invariant, does Uc matter?

At temperature $T \neq 0$, Wilson line changes:

$$\mathbf{L} = \mathcal{P} e^{ig \int_0^{1/T} A_0 d\tau} \to -\mathbf{L}$$

 $\tau = \text{imaginary time: } 0 \rightarrow 1/T$:

aperiodic gauge transf., $U(1/T) = U_c U(0)$.

L propagator for "test" quark, with color electric charge.

SU(3): 3rd root of unity, j=0,1,2

$$U_c=\mathrm{e}^{2\pi i oldsymbol{j}/3}\,\mathbf{1}$$

SU(N): Nth root, Z(N) symmetry.

$$N = 3$$

Z(N) spins of 't Hooft, without quarks

Quarks act like background Z(N) field, break Z(N) symmetry

$$\psi \rightarrow -\psi$$

Usual Z(2) spins vs Polyakov Loop

Ordinary spins, s: symmetry broken at low T, restored for $T > T_c$. First order transition:

$$L = SU(N)$$
 matrix. Trace = Polyakov loop, *l*:

$$\ell = \frac{1}{N} \operatorname{tr} \mathbf{L}$$

< l > gauge invariant, measures color ionization:

$$<\ell>\sim \mathrm{e}^{-F_{\mathrm{test}\,\mathrm{qk}}/T}$$

Color is not ionized in confined phase, so

confinement => < l> = 0: Z(N) symmetric phase.

Color ionized above T_c, so

$$\langle l \rangle \neq 0$$
, Z(N) broken, above Tc.

Svetitsky and Yaffe '80: SU(3) 1st order because of Z(3) symmetry:

Eff. Lag. of *loops* has cubic terms, $l^3 + (l^*)^3$.

Does *not* apply for N > 3. So why is deconfinement 1st order for *all* $N \ge 3$?

Polyakov Loop from Lattice: pure Glue, no Quarks

Lattice: (renormalized) Polyakov loop. Strict order parameter

Three colors: Gupta, Hubner, Kaczmarek, 0711.2251.

Suggests transition region, "semi" QGP, is wide, to ~ 4 T_c, like pressure.

Polyakov Loop from Lattice: Glue plus Quarks, "Tc"

Quarks ~ background Z(3) field. Lattice: Bazavov et al, 0903.4379.

3 quark flavors: weak Z(3) field, does *not* wash out approximate Z(3) symmetry.

Interface tensions: order-order & order-disorder

Lattice, A. Kurkela, unpub.'d: 3 colors, loop *l* complex. Distribution of loop shows Z(3) symmetry

Interface tension: box long in z.

Each end: distinct but degenerate vacua.

Interface forms, action ~ interface tension:

 $T > T_c$: order-order interface = 't Hooft loop:

measures response to magnetic charge

Korthals-Altes, Kovner, & Stephanov, hep-ph/9909516

$$Z \sim e^{-\sigma_{int}V_{tr}}$$

Also: if trans. 1st order, order-disorder interface at T_c.

Lattice: order-order interface tensions σ

Lattice: de Forcrand & Noth, lat/0510081. $\sigma \sim universal$ with N

Semi-classical σ: Giovanengelli & Korthals-Altes ph/0102022; /0212298; /0412322: GKA '04

Above 4 T_c , semi-class $\sigma \sim$ lattice. Below 4 T_c , lattice $\sigma <<$ semi-classical σ .

Even so, when N > 3, all tensions satisfy "Casimir scaling" at any T

Lattice: how does A_0 mass change as $T \rightarrow T_c$?

Gauge invariant: 2 pt function of loops:

$$\langle \operatorname{tr} \mathbf{L}^{\dagger}(x) \operatorname{tr} \mathbf{L}(0) \rangle \sim e^{-\mu x} / x^d$$

 μ/T decreases as $T \rightarrow T_c$

Kaczmarek, Karsch, Laermann, Lutgemeier lat/9908010

Gauge dependent: singlet potential

$$\langle \operatorname{tr} \left(\mathbf{L}^{\dagger}(x) \mathbf{L}(0) \right) \rangle \sim e^{-m_D x} / x$$

 m_D/T increases as $T \rightarrow T_c$

Which way do masses go as $T \rightarrow T_c$? Both change below $\sim 1.5 T_c$. Cucchieri, Karsch, Petreczky lat/0103009, Kaczmarek, Zantow lat/0503017

The competition

Models for the semi-QGP, T_c to 4 T_c

1. Massive gluons: Peshier, Kampfer, Pavlenko, Soff '96...Castorina, Miller, Satz 1101.1255 Castorina, Greco, Jaccarino, Zappala 1105.5902

Mass decreases pressure, so adjust m(T) to fit p(T). Simple model. Gluons *very* massive near T_c .

$$p(T) = \# T^4 - m^2 T^2 + \dots$$

2. Polyakov loops: Fukushima ph/0310121...Hell, Kashiwa, Weise 1104.0572

Effective potential of Polyakov loops.

$$V_{eff}(T) \sim m^2 \ell^* \ell + T \log f(\ell^* \ell)$$

Potential has 5 parameters, most ungainly

With quarks, go from $\mu = 0$ to $\mu \neq 0$, at $T \neq 0$

$$m^2 = T^4 \sum_{i=0}^3 a_i (T_c/T)^i$$

3. AdS/CFT: Gubser, Nellore 0804.0434...Gursoy, Kiritsis, Mazzanti, Nitti, 0903.2859

Add potential for dilaton, ϕ , to fit pressure.

$$V(\phi) \sim \cosh(\gamma \phi) + b \phi^2$$

Only infinite N. Relatively simple potential,

All of these models fit *only* the pressure, and *not* interface tensions. Masses: near T_c, massive gluons heavy, Polyakov loops light.

Matrix model: two colors

Simple approximation: expand about constant, diagonal A₀

Two colors: transition 2nd order, vs 1st for $N \ge 3$

Implicitly: using large N expansion at N = 2 (!)

Matrix model: SU(2)

Simplest possible approx.: model constant gauge transf.'s with constant $A_0 \sim \sigma_3$:

$$A_0 = \frac{\pi T}{g} \mathbf{q} \, \sigma_3 \; , \; \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\mathbf{L}(q) = \begin{pmatrix} e^{i\pi q} & 0 \\ 0 & e^{-i\pi q} \end{pmatrix}$$

Loop l real. Z(2) degenerate vacua q = 0 and 1:

$$\ell = \cos(\pi q)$$

Confined vacuum, \mathbf{L}_{c} , halfway in between: q = 1/2, l = 0.

$$\mathbf{L}_c = \left(\begin{array}{cc} i & 0 \\ 0 & -i \end{array}\right)$$

Classically, no potential for q.

Potential for q, interface tension

Computing to one loop order about *background* A₀ generates a potential for q:

Use $V_{pert}(q)$ to compute σ : Bhattacharya, Gocksch, Korthals-Altes, RDP, ph/9205231.

$$V_{tot}(q) = \frac{2\pi^2 T^2}{g^2} \left(\frac{dq}{dz}\right)^2 + V_{pert}(q) \qquad \Rightarrow \sigma = \frac{4\pi^2}{3\sqrt{6}} \frac{T^2}{\sqrt{g^2}}$$

Computation semi-classical: $A_0 \sim 1/g$, so classical action $\sim 1/g^2$. But V_{pert} only ~ 1

Balancing the two gives $\sigma \sim 1/\sqrt{g^2}$ (and *not* $1/g^2$). Interface *large* in z, $\sim 1/\sqrt{g^2}$ T.

Justifies expansion about constant A₀. GKA '04: corrections to $\sigma \sim g^3$. g^4 ?

Symmetries of the q's

Wilson line L *not* gauge invariant, $L \to \Omega^{\dagger} L \Omega$. Its eigenvalues, $e^{\pm i \pi q}$, are.

The *ordering* of the eigenvalues of **L** is immaterial. Symmetries:

In all cases: $q \rightarrow q + 2$: q angular variable. Valid with quarks.

$$\mathbf{L}(q) = \begin{pmatrix} e^{i\pi q} & 0 \\ 0 & e^{-i\pi q} \end{pmatrix}$$

Pure glue: also, $q \rightarrow q + 1 : Z(2)$ transf., $L \rightarrow -L$

For pure glue, can restrict $q: 0 \rightarrow 1$.

$$\mathbf{L}(1-q) = - \begin{pmatrix} e^{-i\pi q} & 0\\ 0 & e^{i\pi q} \end{pmatrix}$$

Then Z(2) transf. $q \rightarrow 1 - q$:

Z(2) transf., plus exchange of eigenvalues

Hence for pure glue, any potential of q must be invariant under $q \rightarrow 1$ - q

Potentials for the q's

Consider expansion about perturbative vacuum. GKA '04: to $\sim g^3$.

To 2 loop order, find terms $V_{pert} \sim g^2 T^4 q(1-q)$. Destabilize pert. vacuum? *Absorbed* into 1 loop corrected eigenvalues of L, $e^{\pm i \pi q_{ren}}$

Perturbatively, $q_{ren} = 0$ order by order in g. Gocksch & RDP, ph/9302233 Add *non*-pert. terms, by *hand*, to generate $\langle q \rangle \neq 0$:

$$T < T_c$$
: $\langle q \rangle = 1/2 \rightarrow$

Possible "phases" and transitions

Three possible "phases":

```
\langle q \rangle = 0, 1: \langle l \rangle = \pm 1: "Complete" QGP: usual perturbation theory. T >> T<sub>c</sub>.
```

$$0 < \langle q \rangle < 1/2$$
: $\langle l \rangle < 1$: "semi"-QGP. Adjoint Higgs phase for A₀. x T_c > T > T_c x?

$$\langle q \rangle = 1/2$$
: $\langle l \rangle = 0$: confined phase. T < T_c

Lattice: evidence for semi-QGP, where $\langle l \rangle < 1$:

not just direct transition from complete QGP, to confined phase.

Possible to have a phase transition from a phase symmetric in q, $\langle q \rangle = 0$, to Higgs phase, $\langle q \rangle \neq 0$, at some temperature *above* T_c .

(Since adjoint Higgs phase, though, need *not* have transition.)

Strongly constrains possible non-perturbative terms, V_{non}(q).

Getting three "phases", one transition

Simple guess: $V_{non} \sim loop^2$,

Simple guess:
$$V_{\text{non}} \sim \text{loop}^2$$
, $V_{eff} \sim \frac{a}{\pi^2} \left(\ell^2 - 1\right) + q^2(1-q)^2 \sim q^2(1-a) - 2q^3 + \dots$

Transition at "a"=1/16, but 1st order, *directly* from complete QGP, to confinement No semi-QGP? Also, transition to confined phase should be 2nd, not 1st, order.

If $V_{non}(q) \sim q^2$ at small q, usually: direct 1st order transition, with no semi-QGP, or: 2nd order transition at a $T > T_c$, from complete to semi-QGP.

Easy to avoid, if $V_{non}(q) \sim q$ for small q. Then $\langle q \rangle \neq 0$ at all T.

Imposing the symmetry of $q \leftrightarrow 1 - q$, $V_{non}(q)$ must include

$$V_{non}(q) \sim q(1-q)$$

Cartoons of deconfinement

Consider:

$$V_{eff} = q^2 (1 - q)^2 - a q (1 - q), \ a \sim T_c^2 / T^2$$

 \downarrow a = 0: complete QGP

 \downarrow a = 1/4: semi QGP

0.8

a = 1/2: $T_c = >$ Stable vacuum at q = 1/2

Transition second order

0-parameter matrix model, N = 2

Meisinger, Miller, Ogilvie ph/0108009, MMO:

take $V_{non} \sim T^2$

$$V_{non}(q) = \frac{4\pi^2}{3} T^2 T_c^2 \left(-\frac{c_1}{5} q(1-q) + \frac{c_3}{15} \right)$$

Two conditions: transition occurs at T_c , pressure(T_c) = 0

Fixes c₁ and c₃, no free parameters. Not close to lattice data (from '89!)

1-parameter matrix model, N = 2

Dumitru, Guo, Hidaka, Korthals-Altes, RDP '10: to usual perturbative potential,

$$V_{pert}(q) = \frac{4\pi^2}{3} T^4 \left(-\frac{1}{20} + q^2 (1-q)^2 \right)$$

Add a non-perturbative potential $V_{non} \sim T^2 T_c^2$. Also add a term like that in V_{pert} :

$$V_{non}(q) = \frac{4\pi^2}{3} T^2 T_c^2 \left(-\frac{c_1}{5} q(1-q) - c_2 q^2 (1-q)^2 + \frac{c_3}{15} \right)$$

Now just like any other mean field theory. $\langle q \rangle$ given by minimum of V_{eff} :

$$V_{eff}(q) = V_{pert}(q) + V_{non}(q) \qquad \frac{V_{eff}(q)}{dq} \bigg|_{q=\langle q \rangle} = 0$$

 $\langle q \rangle$ is (implicitly) T-dependent. Pressure:

$$p(T) = -V_{eff}(\langle q \rangle)$$

Lattice vs matrix models, N = 2

Choose c_2 to fit e-3p/ T^4 : optimal choice

$$c_1 = 0.23, c_2 = .91, c_3 = 1.11$$

Reasonable fit to $e-3p/T^4$; also to p/T^4 , e/T^4 .

N.B.: $c_2 \sim 1$. At T_c , terms $\sim q^2(1-q)^2$ almost cancel.

Lattice vs 1-parameter model, N = 2

Width of transition region, 0- vs 1-parameter

1-parameter model: get sharper e-3p/T⁴ because $\langle q \rangle$ -> 0 *much* quicker above T_c. Physically: sharp e-3p/T⁴ implies region where $\langle q \rangle$ is significant is *narrow*

N.B.: $\langle q \rangle \neq 0$ at all T, but numerically, *negligible* above ~ 1.2 T_c; p ~ $\langle q \rangle^2$.

Above 1.2 T_c, the T² term in the pressure is due *entirely* to the *constant* term, c₃!

Polyakov loop: matrix models vs lattice, N = 2

Lattice: renormalized Polyakov loop. Matrix model: $\langle l \rangle = \cos(\pi q/2)$

0-parameter model: close to lattice

1-parameter model: sharp disagreement. $\langle l \rangle$ rises to ~ 1 much faster - ?

Interface tension, N = 2

 σ vanishes as $T \rightarrow T_c$, $\sigma \sim (t-1)^{2\nu}$.

Ising $2v \sim 1.26$; Lattice: ~ 1.32 .

Matrix model: ~ 1.5 : c_2 important.

$$\sigma(T) = \frac{4\pi^2 T^2}{3\sqrt{6g^2}} \, \frac{(t^2 - 1)^{3/2}}{t(t^2 - c_2)} \, , \, t = \frac{T}{T_c}$$

Semi-class.: GKA '04. Include corr.'s $\sim g^2$ in matrix $\sigma(T)$ (ok $T > 1.2 T_c$)

N.B.: width of interface *diverges* as $T \rightarrow T_c$, $\sim \sqrt{(t^2 - c_2)/(t^2 - 1)}$.

Adjoint Higgs phase, N = 2

 $A_0^{cl} \sim q \sigma_3$, so $\langle q \rangle \neq 0$ generates an (adjoint) Higgs phase: RDP, ph/0608242; Unsal & Yaffe, 0803.0344, Simic & Unsal, 1010.5515

In background field, $A = A_0^{cl} + A^{qu} : D_0^{cl} A^{qu} = \partial_0 A^{qu} + i g [A_0^{cl}, A^{qu}]$ Fluctuations ~ σ_3 not Higgs, ~ $\sigma_{1,2}$ Higgsed, get mass ~ $2 \pi T \langle q \rangle$

Hence when $\langle q \rangle \neq 0$, when T < 1.2 Tc, *splitting* of masses:

Matrix model: $N \ge 3$

Why the transition is always 1st order

One parameter model

Z(3) paths in SU(3) gauge

For SU(3), two diagonal generators,

$$\lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \; ; \; \lambda_8 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

$$A_0 = \frac{2\pi T}{3g} (q_8 \, \lambda_8 + q_3 \, \lambda_3)$$

Z(3) paths: $q_8 \neq 0$, $q_3 = 0$:

$$\mathbf{L} = e^{2\pi i q_8 \lambda_8/3}$$

Three degenerate vacua, for $q_8 = 0$, 1, and 2. Move between vacua along blue lines,

$$\ell = \frac{1}{3} \operatorname{tr} \mathbf{L} = \left(e^{2\pi i/3} \right)^{q_8}, if q_8 = 0, 1, 2$$

Confining vacuum in SU(3)

Alternately, consider moving along λ_3 .

In particular, consider $q_3 = 1$:

$$\mathbf{L}_c = \begin{pmatrix} e^{2\pi i/3} & 0 & 0\\ 0 & e^{-2\pi i/3} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Elements of $e^{2\pi i/3}$ L_c same as those of L_c. Hence

$$\operatorname{tr} \mathbf{L}_c = \operatorname{tr} \mathbf{L}_c^2 = 0$$

L_c is the confining vacuum, **X**: "invariant" under Z(3) transf.'s.

Move from deconfined vacuum, L = 1, to the confined vacua, L_c , along red line:

Potentials for matrix models, any N

Simplest ansatz: constant, diagonal A₀:

$$A_0^{ij} = \frac{2\pi T}{g} q_i \, \delta^{ij} \,, \, i, j = 1 \dots N$$

At 1-loop order, perturbative potential

$$V_{pert}(q) = \frac{2\pi^2}{3} T^4 \left(-\frac{4}{15} (N^2 - 1) + \sum_{i,j} q_{ij}^2 (1 - q_{ij})^2 \right) , \ q_{ij} = |q_i - q_j|$$

Assume non-perturbative potential $\sim T^2 T_c^2$:

$$V_{non}(q) = \frac{2\pi^2}{3} T^2 T_c^2 \left(-\frac{c_1}{5} \sum_{i,j} q_{ij} (1 - q_{ij}) - c_2 \sum_{i,j} q_{ij}^2 (1 - q_{ij})^2 + \frac{4}{15} c_3 \right)$$

For SU(N), $\Sigma_{j=1...N}$ $q_j = 0$. Hence N-1 independent q_j 's, # diagonal generators.

Getting to confinement in q_j space

For general problem of interfaces, need all N-1 directions in q_j space.

Move from pert. vacuum, to the confining point, along *one* direction, q_j^c:

Perturbative vacuum: q = 0;

Confining point: q = 1/2.

$$q_j^c = \left(\frac{2j - N - 1}{N}\right) q, j = 1 \dots N$$

For 3 colors, 3 eigenvalues, $e^{\pm 2\pi i q/3}$, 1:

$$\ell = \frac{1}{3} \left(e^{2\pi i \mathbf{q}/3} + e^{-2\pi i \mathbf{q}/3} + 1 \right)$$

$$1 > \langle \ell \rangle > 0$$

$$\langle \ell \rangle = 0$$

Why deconfinement is 1st order for *all* $N \ge 3$

Define
$$\phi = 1 - 2q$$
,
Confining point $\phi = 0$
$$V_{tot} = \frac{\pi^2(N^2 - 1)}{45} T_c^4 t^2 (t^2 - 1) \widetilde{V}(\phi, t), t = \frac{T}{T_c}$$

$$\widetilde{V}(\phi, t) = -m_{\phi}^{2} \phi^{2} - 2\left(\frac{N^{2} - 4}{N^{2}}\right) \phi^{3} + \left(2 - \frac{3}{N^{2}}\right) \phi^{4}$$

$$m_{\phi}^{2} = 1 + \frac{6}{N^{2}} - \frac{c_{1}}{t^{2} - c_{2}}$$

Never a term linear in ϕ . No cubic term when N = 2, but for any $N \ge 3$!

The coefficient of the cubic term is special to the model, but its existence is *not*. Along q^c in q_j space, about $\phi = 0$ there is no symmetry of $\phi \to -\phi$ for any $N \ge 3$. Hence cubic terms in ϕ , and so a 1st order transition, are *generic*.

Special to matrix model, with the qi's elements of Lie algebra.

Svetitsky and Yaffe '80: from loops, elements of Lie group, 1st order only for N = 3

Lattice vs 0- and 1- parameter matrix models, N = 3

Results for N=3 similar to N=2.

0-parameter model way off.

Good fit e-3p/T⁴ for 1-parameter model,

$$c_1 = 0.32, c_2 = 0.83, c_3 = 1.13$$

Again, $c_2 \sim 1$, so at T_c , terms $\sim q^2(1-q)^2$ almost cancel.

Lattice vs 1- parameter model, N = 3

Polyakov loop: matrix models vs lattice, N = 3

Renormalized Polyakov loop from lattice does not agree with either matrix model $\langle l \rangle$ - 1 ~ $\langle q \rangle^2$: sharper e-3p/T⁴ for 1-parameter model due to quicker decrease in $\langle q \rangle$ By 1.2 T_c, $\langle q \rangle$ negligible, ~ .05

Again, for $T > 1.2 T_c$, the T^2 term in pressure due *entirely* to the *constant* term, c_3 !

Interface tension, N = 2 and 3

Order-order interface tension, σ , from matrix model close to lattice.

For T > 1.2 T_c, path along λ_8 ; for T < 1.2 T_c, along both λ_8 and λ_3 .

 $\sigma(T_c)/T_c^2$ nonzero but *small*, ~ .02. Results for N = 2 and N = 3 similar - ?

Adjoint Higgs phase, N = 3

For SU(3), deconfinement along $A_0^{cl} \sim q \lambda_3$. Masses $\sim [\lambda_3, \lambda_i]$: two off-diagonal. Splitting of masses only for T < 1.2 T_c:

Measureable from singlet potential, $\langle \operatorname{tr} L^{\dagger}(x) L(0) \rangle$, over *all* x.

Matrix model: $N \ge 3$

To get the latent heat right,

Two parameter model.

Improve thermodynamics, interface tensions.

Latent heat, and a 2-parameter model

Latent heat, $e(T_c)/T_c^4$: 1-parameter model too small:

1-para.: 0.33. BPK:
$$1.40 \pm .1$$
; DG: $1.67 \pm .1$.

$$c_3(T) = c_3(\infty) + \frac{c_3(1) - c_3(\infty)}{(T/T_c)^2}$$

2-parameter model, $c_3(T)$. Like MIT bag constant

WHOT: $c_3(\infty) \sim 1$. Fit $c_3(1)$ to DG latent heat

Fits lattice for $T < 1.2 T_c$, overshoots above.

$$c_1 = .833, c_2 = .552$$

Bag const $\sim (203 \text{ MeV})^4$

c₂ not near 1, vs 1-para.

Anomaly: 2-parameter model vs lattice

Anomaly times T²: 2-parameter model vs lattice

Thermodynamics of 2-parameter model, N = 3

Interface tensions, 2-parameter model, N = 3

Order-order interface tension, σ , close to lattice. Order-order $\sigma(T_c)/T_c^2 \sim .043$.

1st order transition, so can compute order-disorder $\sigma(T_c)/T_c^2 \sim .022$, vs Lattice: Lucini, Teper, Wegner, lat/0502003, .019 Beinlich, Peikert, Karsch lat/9608141 0.16

2-parameter model, N = 4

Assume $c_3(\infty) = 0.95$, like N=3. Fit $c_3(1)$ to latent heat, Datta & Gupta, 1006.0938 Order-disorder $\sigma(T_c)/T_c^2 \sim .08$, vs lattice, .12, Lucini, Teper, Wegner, lat/0502003 $c_3(1) = 1.38$, $c_3(\infty) = .95$, $c_1 = 1.025$, $c_2 = 0.39$

2-parameter model, N = 6

Order-disorder $\sigma(T_c)/T_c^2 \sim .25$, vs lattice, .39, Lucini, Teper, Wegner, lat/0502003

$$c_3(1) = 1.42$$
, $c_3(\infty) = .95$, $c_1 = 1.21$, $c_2 = 0.23$

Conclusions

Transition region *narrow*: for pressure, $< 1.2 \text{ T}_c!$ For interface tensions, $< 4 \text{ T}_c...$

Above 1.2 Tc, pressure dominated by *constant* term $\sim T^2$.

What does this term come from? Gluon mass (for spatial gluons)?

In 2+1 dimensions, ideal T³. Caselle + ...: also T² term in pressure. But mass would be m² T, not m T².

T² term like free energy of massless fields in 2 dimensions: string? Above T_c?

To say the least: need to include quarks!

Can then compute temperature dependence of:

shear viscosity, energy loss of light quarks, quarkonia damping....

Lattice: SU(N) in 2+1 dimensions

Caselle, Castagnini, Geo, Gliozzi, Panero, 1105.0359, unpublished SU(N) for N=2,3,4,5

$$p(T) \approx \# T^2(T - c T_c), c \approx 1.$$

